American Journal of Epidemiology

M © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of

Public Health. All rights reserved. For permissions, please e-mail: journals.permissions @ oup.com.

Vol. 173, No. 9

DOI: 10.1093/aje/kwq481
Advance Access publication:
March 21, 2011

Practice of Epidemiology

Bias Due to Left Truncation and Left Censoring in Longitudinal Studies of

Developmental and Disease Processes

Kevin C. Cain*, Sioban D. Harlow, Roderick J. Little, Bin Nan, Matheos Yosef, John R. Taffe, and

Michael R. Elliott

* Correspondence to Dr. Kevin C. Cain, Department of Biostatistics, University of Washington, Box 357232, F-600 Health Sciences

Building, Seattle, WA 98195-7232 (e-mail: cain@uw.edu).

Initially submitted June 8, 2009; accepted for publication December 8, 2010.

In longitudinal studies of developmental and disease processes, participants are followed prospectively with
intermediate milestones identified as they occur. Frequently, studies enroll participants over a range of ages
including ages at which some participants’ milestones have already passed. Ages at milestones that occur prior
to study entry are left censored if individuals are enrolled in the study or left truncated if they are not. The authors
examined the bias incurred by ignoring these issues when estimating the distribution of age at milestones or the
time between 2 milestones. Methods that account for left truncation and censoring are considered. Data on the
menopausal transition are used to illustrate the problem. Simulations show that bias can be substantial and that
standard errors can be severely underestimated in naive analyses that ignore left truncation. Bias can be reduced
when analyses account for left truncation, although the results are unstable when the fraction truncated is high.
Simulations suggest that a better solution, when possible, is to modify the study design so that information on
current status (i.e., whether or not a milestone has passed) is collected on all potential participants, analyzing those
who are past the milestone at the time of recruitment as left censored rather than excluding such individuals from

the analysis.

bias (epidemiology); censoring; epidemiologic methods; longitudinal studies; study design; truncation

Studies of developmental and disease processes often fol-
low participants prospectively, identifying milestones as
they occur. Examples include longitudinal studies of the
developmental stages in puberty, timing of pregnancies,
time to spontaneous abortion, presentation of occupational
disease in workers, development of sequelae of chronic dis-
eases, and stages of reproductive aging among midlife
women. Ideally, all study participants would be enrolled
prior to the first milestone of interest and followed until
the final milestone was observed, so the entire process is
observed for all participants. However, this so-called inci-
dent cohort design (1) is not always feasible. The process of
interest may develop over many years, and the age at onset
of the process or timing of milestones may vary consider-
ably across participants.

In practice, researchers usually recruit participants over
a range of ages when most are expected to be near the first
milestone of interest. Individuals who have already passed
the final milestone or a specified earlier milestone at the

time of recruitment are usually excluded from the study.
Such a design, referred to as a prevalent cohort study (1),
is subject to bias from 3 causes, if not analyzed correctly (2).
Right censoring occurs when a participant has not yet
reached the milestone of interest at study end. Left censor-
ing occurs if a participant is entered into the study when the
milestone of interest occurred prior to study entry but the
age at that milestone is unknown. Left truncation occurs
when individuals who have already passed the milestone
at the time of study recruitment are not included in the study.
Survival analysis methods for dealing with right censoring
(2, 3) are widely understood and implemented by epidemi-
ologists. However, the methods for adjusting for left trun-
cation and left censoring are less widely known and
infrequently applied in longitudinal epidemiologic studies.

When a single milestone is subject to truncation, it is fairly
easy to understand why truncation causes bias. For example,
recent articles (4, 5) have discussed the large bias caused by
left truncation in estimating the risk of spontaneous abortion.
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Figure 1. Boxplots of the estimated distribution of age at onset of the
late menopausal transition, as defined by first occurrence of a men-
strual cycle of at least 60 days in length. Data from 3 studies are
shown. Modified from a figure in Harlow et al. (6).

In this setting, a large fraction of pregnant women enter the
study after the gestational age corresponding to peak risk of
spontaneous abortion, leading to an underestimation of risk
if the analysis does not account for the fact that many women
with an early spontaneous abortion have been excluded.
Spontaneous abortions often occur before women know they
are pregnant and are undetected.

A more complex situation involving 2 milestones is illus-
trated by a study evaluating different methods for defining
onset of the late stage of the menopausal transition in mid-
life women. Figure 1, modified from a figure in Harlow et al.
(6), shows the estimated distribution of age at onset of the
late menopausal transition in 3 studies, as defined by the
occurrence of a menstrual cycle of at least 60 days in length
after age 40 years. A striking feature is that the estimated
ages at late transition are much younger for the TREMIN
Research Program on Women’s Health (“TREMIN”’) than
for the Melbourne Women’s Midlife Health Project (““Mel-
bourne”) study, with estimated ages for the Seattle Midlife
Women’s Health (‘““Seattle’’) study falling in between.
TREMIN (7) participants all enrolled prior to age 35 years,
while the age ranges for study entry were 35-55 for Seattle
(8) and 45-55 for Melbourne (9). In the latter 2 studies,
women who were already postmenopause at the time of
recruitment were excluded. Thus, the higher estimates of
age at onset of the menopausal transition in these studies
could arise because the estimation procedure fails to ac-
count for the following: 1) left censoring of age at late
transition because for some women the late transition had
occurred prior to study entry; and 2) left truncation on age at
final menstrual period because women already past the final
menstrual period are excluded.

Information on the excluded cases could potentially be
collected and used in the analyses. We focus mainly on the
situation where such information is absent, but we also study
the potential gain from collecting information on the ex-
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Figure 2. Timing of milestones X and Y'relative to window A — B. In
this hypothetical situation, individuals are recruited into the study at
age 48 years (A) and followed until age 53 years (B). Six individuals
are portrayed. In reality, A and B differ by participant but, for simplicity
of presentation, the figure shows A and B as being the same for all 6
individuals. The individual in row 1 had milestone X at age 50 years
and milestone Y at age 52 years. Both events are within the obser-
vation window and, hence, both milestones are observed. For the
second individual, X is observed, but Y has not yet occurred when
observation ends at B, while for the third, both X and Y occur after
observation ends. For the 3 remaining individuals, X occurred before
study entry, and for the sixth person Y also occurred before study
entry.

cluded cases. We consider the single-milestone case but also
address the more complicated case where truncation is based
on 1 milestone, but the variable of interest is either the time
of a different milestone or the time between 2 milestones.
The menopausal transition is used throughout as the moti-
vating example, with 2 milestones: the transition from early
to late stage (6, 10, 11) of the menopausal transition and the
final menstrual period. Simulations to estimate bias are based
on longitudinal menstrual data from TREMIN (7). Analyses
that account for left truncation and/or left censoring are pre-
sented, as well as naive analyses that ignore these features.

MATERIALS AND METHODS

Let Y denote age at a terminal event or milestone, such as
the final menstrual period. Let X denote age at an interme-
diate event or milestone, such as entry to the late stage of the
menopausal transition. By definition, X < Y. Let D denote
the difference (¥ — X), representing years spent in late men-
opausal transition in our example. Let A denote age at po-
tential study entry and B denote age at potential study exit.
The goals of analysis are to estimate the distributions of ¥, X,
and D.

Figure 2 illustrates the possible timings of milestones X
and Y relative to the ages at entry (A) and exit (B) from the
study. Which of the 6 types of individuals will be included in
the study depends on the inclusion criteria specified in the
study design. In this paper, we consider 2 common study
designs. In Design I, people who have already passed mile-
stone X, like participant types 4—6 in Figure 2, are excluded,
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which means that truncation acts on variable X. In the ex-
ample of transition to menopause, this means that women
who are already in late transition at A are excluded.

In Design II, participants who have already passed mile-
stone Y, like participant type 6, are excluded. Participants
like 4 and 5 are included, but the value of X is left censored.
Thus, milestone X is subject to left censoring, while trunca-
tion acts on milestone Y. In our example, postmenopausal
women are excluded under Design II, and women already
in late stage at the time of entry are included but left
censored.

The single-milestone case—estimating the distribution
of X in Design |

Under Design I, left truncation acts on X: Subjects with
X < A are excluded. The researcher knows that such indi-
viduals would have been excluded but does not know what
number are excluded. If A is the same for all participants,
then an estimator that ignores left truncation will estimate
the distribution of X conditional on X > A, which differs
from the unconditional or marginal distribution of X. When
age at study entry A is variable, a version of the nonpara-
metric product-limit estimator that incorporates age at entry
will correctly deal with left truncation to give an unbiased
nonparametric estimate of the distribution of X. Code for
doing such a nonparametric analysis in STATA (StataCorp
LP, College Station, Texas), SAS (SAS Institute, Inc., Cary,
North Carolina), and R (R Foundation for Statistical Com-
puting, Vienna, Austria) statistical software/language is pro-
vided in Web Appendix 1, the first of 4 Web appendices
posted on the Journal’s Web site (http://aje.oxfordjournals
.org/). This procedure gives an unbiased estimate of the
unconditional distribution of X only if the lowest A in the
data set (A ;) is earlier than the earliest possible value of X.
Moreover, the estimate can be very unstable if the first X is
observed shortly after A;,, when the risk set is small be-
cause only a few participants have entered prior to that age.
Precision can be increased with a modification to estimate
the distribution of X conditional on X > Ay, where Ag is
some value greater than A,,;,, chosen so that a fairly large
number of participants have A < A,. However, the improve-
ment in precision comes at the cost of increased bias, to the
extent that the conditional and unconditional distributions of
X differ.

When a large fraction of the left tail of the distribution of
X is below the lowest age at entry, A, (or Ag), then the only
way to get unbiased estimates of the unconditional distribu-
tion is to know the appropriate parametric distribution for X,
so that the probability in that truncated left tail can be esti-
mated. If a parametric distribution is posited, it is fairly easy
to modify the likelihood to account for left truncation: The
likelihood is divided by the probability that the observation
is included in the sample given the age at entry for each
participant, i.e., Pr(X > A). Web Appendix 1 provides
STATA and R code for this analysis, assuming a normal
distribution.

Now consider an alternative to Design I, in which current
status information (i.e., whether or not X has occurred prior
to A) is recorded on all potential participants. In this situa-

tion, participants with X < A can be included in the analysis
as left censored. Web Appendix 1 provides code for analysis
of left-censored data.

Both of the designs above assume that one can reliably
determine whether or not X has occurred prior to study entry.
Unfortunately, this is not always the case. In the example of
the menopausal transition, one definition of onset of late
transition is the first occurrence of a long (e.g., 60 days or
more) menstrual cycle, defined as days from the start of one
menstrual episode to the start of the next episode, after age
40 years. If a woman enters the study at age 48 years and
a long menstrual cycle occurs some time later, it may not be
clear whether this was the first occurrence of a long cycle or
whether one or more long cycles actually occurred prior to
study entry. It is tempting, though unwise, to just treat the
first observed occurrence as if it were the actual first occur-
rence, as was done in the latter 2 studies portrayed in Figure
1 (and which we refer to as the naive method in the simu-
lation results for Design II below).

The double-milestone case—estimation of the
distributions of X and D under Design Il

The more complicated 2-milestone case involves vari-
ables X, ¥, and D =Y — X. Under Design II, truncation acts
on Y, and X is subject to left censoring. Analyses of X and D
are potentially influenced by both of these effects. An
appropriate analysis requires a model for the joint distribu-
tion of X and Y. Truncation based on Y will cause bias in the
estimated distribution of X only if Y and X are not in-
dependent. Jiang et al. (12) discuss truncation and censor-
ing in the context of the development of diabetic
retinopathy (X) and death (Y) in patients with diabetes.
They propose a semiparametric model in which the asso-
ciation between X and Y is described by a parametric
relation, while the marginal distributions of X and Y are
estimated nonparametrically.

We propose a different model that postulates a bivariate
normal distribution for X and Y. We have developed R func-
tions (provided in Web Appendix 2) to find the maximum
likelihood estimates for the means of X, Y, and D while
accounting for either the left truncation of X (Model I) or
left censoring of X and left truncation of ¥ (Model II). A
fully parametric model makes stronger distributional as-
sumptions but facilitates estimation of the distribution of
D as well as the distributions of X and Y.

Simulations based on menopausal transition data

The TREMIN study (7) enrolled 1,997 women students at
the University of Minnesota in 1935-1939, many of whom
maintained menstrual calendars throughout their reproduc-
tive life. Our analysis includes data from age 40 years on-
ward for the 660 women who were still participating at age
40. The menstrual calendars provided the length in days of
their menstrual cycles. Y = age at the final menstrual period
was defined as the age at the last bleeding episode preceding
12 bleed-free months. X = age at the start of the late men-
opausal transition was defined as the first observed cycle of
length 60 days or longer, with the further condition that
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isolated 60-day cycles (with no recurrences in the next 10
cycles) before age 45 years do not count as the start of late
stage (13). Four women appear to be outliers, showing per-
sistent long cycles prior to age 45 years but the final men-
strual period much later. After removal of these outliers, an
examination of the marginal distributions of X and Y indi-
cates nearly normal distributions (Web Appendix 3). How-
ever, a deviation from bivariate normality is apparent with D
having a skewed distribution, in part because of the fact that
no points have X > Y, by definition. Nonetheless, we pro-
ceed with analyses based on the bivariate normal assump-
tion and discuss in Web Appendix 3 the possible methods
for improving the model.

A useful feature of TREMIN data is the absence of left
censoring or left truncation. Thus, we can estimate the dis-
tributions of X, ¥, and D = Y- X on the basis of the full data
set with no truncation and then assess bias by simulating
various amounts of truncation. The simulated data sets are
generated as follows:

1. A 10-year range for age at entry is specified, for exam-
ple, 40-50 years.

2. A bootstrap (14) sample is drawn from the original data
set.

3. For each participant, a random number A is generated
from a uniform distribution over the 10-year age range.

4a. For Design I, if X < A, then that participant is deleted
from the data set.

4b. For Design 11, if ¥ < A, then that participant is deleted
from the data set.

5. The reduced data set is used to produce estimates of the
mean and standard deviation of X and D based on sev-
eral alternative methods.

Steps 2-5 are repeated 100 times for each age range, and
then the process is repeated for different age ranges at entry
from 35-45 to 47.5-57.5 years. Simulations and data anal-
yses use R, version 2.10.1, software.

RESULTS

Scatterplots of simulation results are displayed in Web
Figures 11-16 in Web Appendix 4, for both parametric
and nonparametric estimators. Simulation results for para-
metric estimators of the mean are summarized in the fol-
lowing tables; patterns of results are similar for
nonparametric estimators of the median.

Table 1 shows maximum likelihood estimates of the mean
of X, age at entry to the late stage of the menopausal tran-
sition, based on simulations of Design I that has truncation
on X, refer to Web Figure 12 in Web Appendix 4 for a graph-
ical display of these results. Rows in Table 1 show averages
of the mean and averages of the standard error over 100
simulated data sets. The first row of results is based on the
full data set with no truncation, giving an estimated mean
age at the start of late stage of 48.99 years. Subsequent rows
show how the estimates of the mean and standard error
change as the amount of truncation increases (i.e., age at
entry increases), as well as the empirical bias in years, de-
fined as the mean age at late transition minus the value in the
absence of truncation (row 1). Results of 3 analyses are
shown in Table 1. All analyses are the normal-based maxi-
mum likelihood estimate and account for right censoring.
Analysis 1 ignores left truncation. The likelihood for Anal-
ysis 2 accounts for left truncation by dividing by Pr(X > A).
Analysis 3 is based on the hypothetical alternative study
design in which observations with X prior to study entry
are included in the analysis as left censored, rather than
being left truncated and excluded.

As the amount of truncation increases, the naive estimate
has an increasing positive empirical bias. For age at entry of
42.5-52.5 years, the empirical bias for the naive estimator is
substantial, namely, 1.29 years. Contrast this bias with the
empirical bias of only 0.07 for Analysis 2, which controls
for left truncation, and —0.01 for Analysis 3, which treats
observations as left censored rather than left truncated. Ap-
proximately half of the participants have been truncated for

Table 1. Estimates of Age at Entry to Late Stage Based on Design |, Left Truncated on X?

Simulzt:tdr yAg:;tsStudy No. of No. of (Na'l'vl(\:lag%ﬂrse.'s Left (Actﬁ::lar:gss If?.)r2 Left (Acsgjrll‘gl?o? Left
’ Participants Pgll;tsl::’l‘);féts Truncation on X) Truncation on X) Censoring of X)

Median Range Mean (SE)  Empirical Bias® Mean (SE) Empirical Bias Mean (SE)  Empirical Bias

No truncation 656 462 48.99 (0.14) 0.00 48.99 (0.14) 0.00 48.99 (0.14) 0.00
40.0 35-45 623 452 49.05 (0.14) 0.06 48.96 (0.15) —0.03 48.95 (0.14) —0.04
42.5 37.5-47.5 565 424 49.31 (0.14) 0.32 49.00 (0.16) 0.01 48.97 (0.14) —0.02
45.0 40-50 465 362 49.73 (0.14) 0.74 49.01 (0.19) 0.02 48.98 (0.15) —0.01
47.5 42.5-52.5 334 269 50.28 (0.16) 1.29 49.06 (0.26) 0.07 48.98 (0.16) —0.01
50.0 45-55 199 166 50.97 (0.19) 1.98 48.37 (0.77) —0.62 48.94 (0.20) —0.05
52.5 47.5-57.5 96 80 52.07 (0.24) 3.08 37.82 (6.67) —-11.17 48.94 (0.30) —0.05

Abbreviations: SE, standard error; X, age at entry to late stage, first 60-day cycle.

& All analyses account for right censoring.

® Number of participants with age at entry to late stage observed rather than being right censored.

¢ Analysis 3 is based on the hypothetical alternative study design in which observations with X prior to study entry are included in the study
analysis as left censored, rather than being left truncated and excluded from analyses as in Analyses 1 and 2.

9 Defined as the mean on that row minus the mean on the first row (which has no truncation).

Am J Epidemiol. 2011;173(9):1078-1084



1082 Cainetal.

this row and, thus, it is not surprising that the naive methods
have substantial bias. Note also the differences in standard
error. Standard errors increase rapidly for Analysis 2, as the
age at simulated study entry increases, appropriately reflect-
ing the fact that the available information is greatly reduced.
In contrast, the standard error for the naive parametric esti-
mators increases much more slowly: The precision of the
estimated mean is overstated. The standard error for Anal-
ysis 3 increases less slowly than for Analysis 2, reflecting
the fact that knowledge of left censored observations adds
information to the analysis.

Table 2 shows estimates for age at onset of late transition
(X) for Design II with left truncation on age at the final
menstrual period (Y) and X subject to left censoring (Web
Figure 15 in Web Appendix 4). All estimates are based on
a bivariate normal distribution of X and Y. The naive esti-
mates ignore truncation and do not deal correctly with left
censoring on X. Specifically, the naive approach sets X equal
to age at the first observed 60-day cycle after A, correspond-
ing to what would be done if the first observed 60-day cycle
after study entry were assumed to be the first in that
woman’s lifetime. In the row corresponding to median
simulated age at entry of 47.5 years, the naive estimator
has an empirical bias of 1.13, slightly less than under
Design I (Table 1).

Accounting for left censoring on X in Analysis 2 reduces
bias by about one half. In addition, accounting for left trun-
cation on Yin Analysis 3 reduces bias almost to zero, except
for the final row in which the severe truncation leads to
unstable results and a high standard error. The final column
of Table 2 shows results based on an alternative design in
which observations are left censored on Y rather than being
left truncated on Y. Compared with Analysis 3, the standard
error is smaller under this alternative design, and bias is
small except for the final 2 rows.

Table 3 (also Web Figure 16 in Web Appendix 4) shows
estimates of the time spent in late stage (D = Y — X) based
on Design II and a bivariate normal distribution for X and Y.
The empirical bias of the naive Analysis 1 estimates is in-
creasingly negative as the degree of truncation increases.
However, the bias for Analysis 2, which accounts for left
censoring of X, is positive but rather small. This latter result
indicates that the large negative bias in Analysis 1 is pri-
marily due to failure to account for left censoring of X.

The remaining small positive bias of Analysis 2 is due to
truncation on Y and the fact that ¥ and D are positively
correlated. This bias is reduced almost to zero (except in
the bottom row) for both Analysis 3, which accounts for
truncation, and Analysis 4, which considers observations
as left censored on Y rather than truncated.

DISCUSSION

Left truncation in studies of developmental processes is
not just of theoretical interest: It can cause substantial bias if
ignored. Examples in which a large fraction of potential
observations are left truncated are rate of spontaneous abor-
tion (4) and age at menopause transition stages (6). The
difference in Figure 1 between the Melbourne study, with

Table 2. Estimates of Age at Entry to Late Stage Based on Design I, Left Truncated on Y and Left Censored on X®

Analysis 4°
(Accounts for Left
Censoring of X and Left

Analysis 3
(Accounts for Left
Censoring of X and Left

Analysis 2
(Accounts for Left
Censoring of X, Ignores Left

Analysis 1
(Naive, Ignores

Truncation on Y and Left

Simulated Age at Study

No. of
Participants

Observed”

No. of
Participants

Censoring of Y)

Mean (SE)
48.99 (0.14)

Truncation on Y)

Mean (SE)
48.99 (0.14)

Truncation on Y)

Mean (SE)
48.99 (0.14)

Censoring of X)

Mean (SE)

Entry, years

Empirical Bias Empirical Bias Empirical Bias

Empirical Bias®

Range

Median

0.00
—0.04
—0.02
—0.01
—0.03
-0.13

48.95 (0.14)

0.00
—0.03
—0.01

48.96 (0.14)

0.0
—0.02

48.97 (0.14)

0.00
0.01
0.1

48.99 (0.14)
49.00 (0.14)

462
458
450

656
631

No truncation
35-45
37.5-47.5

o
<

48.97 (0.14)

48.98 (0.15)

0.08
0.27

0.59

49.07 (0.14)

8

49.17 (0.13)
49.54 (0.13)

593
525
421

42.5

48.98 (0.15)

0.01
0.04
0.03

49.00 (0.16)

49.26 (0.14)

0.55
1.13

1.84

417
348
252

40-50
42.5-52.5

49.58 (0.15) 49.03 (0.19) 48.96 (0.16)

50.12 (0.14)
50.83 (0.15)

47.5

48.86 (0.19)

49.02 (0.28)

1.00

49.99 (0.18)

294

45-55
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Abbreviations: D, years in late stage; SE, standard error; X, age at marker for late stage, first 60-day cycle; Y, age at final menstrual period.

2 All analyses account for right censoring.
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® Number of participants with years in late stage observed rather than right censored; that is, both age at entry to late stage and age at final menstrual period are observed.

¢ Analysis 4 is based on the hypothetical alternative study design in which observations with Y prior to study entry are included in the study analysis as left censored, rather than being left

truncated and excluded from analyses as in Analyses 1-3.

9 Defined as the mean on that row minus the mean on the first row (which has no truncation).

age at entry of 45-55 years, and the TREMIN study is a little
over 2 years. The biases of the naive analyses simulated in
Tables 1 and 2 for the row corresponding to age at entry of
45-55 years are 1.98 and 1.84 years, respectively, indicating
that the difference seen in Figure 1 could be attributable
mostly to failure to correctly account for left truncation on
age at the final menstrual period and left censoring of age at
onset of late transition.

Analyses to deal with truncation are fairly straightfor-
ward when the variable of interest is also the variable that
determines truncation. Both nonparametric and parametric
methods exist in readily available software (R, SAS, STATA)
for dealing with truncation in such cases. However, when the
distribution of 1 milestone (X) is of interest but truncation acts
on a second milestone (Y), it is necessary to model the asso-
ciation between them, and such a model requires at least
some parametric assumptions. Parametric models based on
a normal or other distribution can be useful in this situation,
although results are dependent on the distributional and
model assumptions. The bivariate normal model used for
our example works quite well for estimating the distribution
of X, which is very close to a normal distribution.

The quantity D, defined as Y — X, has a nonnormal distri-
bution in the TREMIN data. The simulations presented here
are useful for illustrating the existence of bias and how it can
be reduced by accounting for truncation and left censoring,
but alternative models that modify the normal assumption are
desirable if one is interested in accurately estimating the
distribution of D. Web Appendix 3 contains an example of
such an exploration and a discussion of some challenges.

It should be noted that a limitation of any distribution-
based analysis is that results could be sensitive to distribu-
tional assumptions, yet checking these assumptions may be
impossible if a large fraction of potential participants have
been truncated such that the leftmost part the distribution is
not represented in the sample. Our example is atypical in
that untruncated data are available, so it is possible to eval-
uate the distributional assumptions used in the simulations.

Our simulations show that accounting for left truncation
greatly reduces bias, but estimates become unstable as the
amount of truncation approaches or exceeds 50%. This in-
stability is to be expected. In the extreme case, one is esti-
mating the entire distribution on the basis of data from only
the right tail of the distribution, which is probably unwise.
Another possible concern about analyses that account for
left truncation is that they assume the truncation boundary is
sharp. For truncation on Y, this means that, for individuals
with Y <A, the probability of being included is zero, and for
those with ¥ > A the probability of being included is un-
related to how large (Y — A) is, for example, how close
a woman is to menopause. This assumption may not be true
in some settings. Further investigation is needed into the
effect of a nonsharp inclusion boundary on estimates that
account for truncation, and whether the truncation adjust-
ment can be modified to account for a nonsharp boundary.

In some situations, it is possible to address the problem of
truncation by modifying the study design. Individuals with
Y < A are not always identifiable (e.g., in spontaneous abor-
tion), but when they are identifiable it is preferable to collect
current status information (i.e., whether Y has occurred yet)
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on all potential study participants at initial assessment.
Combining these cross-sectional data with longitudinal data
on participants with ¥ > A converts a left-truncation prob-
lem into a left-censoring problem and leads to estimates that
are less biased, more precise, and more robust to high de-
grees of censoring. Knowing the number of observations
with ¥ < A is more informative than just knowing that left
truncation exists but with no knowledge of how many in-
dividuals have been truncated.

This paper has focused on estimating the marginal or
unconditional distributions of X, ¥, and D. Other types of
analysis are also of interest, for example, the association of
predictors, such as body mass index and smoking status,
with X, D, or Y. Web Appendix 1 gives code for doing such
an analysis, while accounting for left truncation or left cen-
soring in the single-milestone case.

The bias due to truncation and censoring discussed in this
report is an example of the more general problem that struc-
tural biases can occur when the inclusion criteria for a study
are related either directly or indirectly to a variable of pri-
mary study interest. Many other examples of this phenom-
enon exist, such as cancer screening and longitudinal studies
of occupational exposures. In any such setting, analyses
should consider the study-specific details of recruitment
and inclusion criteria that can lead to bias. In this paper,
we have illustrated the substantial bias that can result from
failing to do so.
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